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Abstract
A class of graphs including models for diamond-type crystals and carbon
nanotubes is defined, and some results concerning random walks and
symmetry transformations are presented. These graphs may be useful discrete
approximants in a path integral approach to physical phenomena occurring
in diamond-type crystals and carbon nanotubes. Some details concerning a
possible application of Gudder’s discrete quantum mechanics to these crystals
are analysed.

PACS numbers: 0540F, 6146

1. Introduction

A crystal is a very complicated physical system. The study of the physical phenomena occurring
in such a system cannot be done without assuming some rather drastic approximations. In
many cases, it is useful [19] to approximate a crystal by a graph: the atoms are the vertices,
and the chemical bonds are the edges of the graph. The first purpose of this paper is to
present a class of graphs containing models for diamond-type crystals [1,10,24,30] and carbon
nanotubes [6, 17, 18, 28, 32]. It is a more general and unitary view on some results published
previously [2–4], which may facilitate a transfer of ideas and methods.

Since the movement of an electron (excitation, vacancy, etc) on a crystal can be regarded
as a sequence of jumps between neighbouring sites, the random walks are expected to play
an important role in the description of physical phenomena occurring in crystals. The second
purpose of this paper is to present some mathematical results concerning random walks on our
graphs, and to suggest some possible physical interpretations.

It is well known that the diffusion equation has an underlying microscopic model, namely
Brownian motion, which can be approximated by random walks on a hypercubic lattice [27].
Consider a point particle which performs an erratic motion on a d-dimensional hypercubic
lattice (Zh)d with lattice constant h such that within a period of time of length τ , the particle
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may proceed along any of the 2d directions of the lattice (steps of size h), the probability
being (2d)−1 in each direction. Denoting e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed =
(0, . . . , 0, 1), and by P(x, t; x ′, t ′) the probability that the particle arrives at site x ′ at time t ′

after having started from x at time t , we get the relation [27]

P(x0, t0; x, t + τ) = 1

2d

d∑
j=1

(P (x0, t0; x − hej , t) + P(x0, t0; x + hej , t)) (1)

which can be written as
P(x0, t0; x, t + τ)− P(x0, t0; x, t)

τ

= h2

2dτ

d∑
j=1

P(x0, t0; x − hej , t) + P(x0, t0; x + hej , t)− 2P(x0, t0; x, t)
h2

. (2)

For an appropriate choice of the time unit, in the limit h → 0, τ → 0, this finite difference
equation corresponds to the d-dimensional diffusion equation ∂

∂t
P = 1

2�P , and the considered
random walk describes what is called d-dimensional Brownian motion.

If the diffusion takes place inside a crystal, then there is a natural discrete approximant,
namely the associated graph, which may be more adequate than the use of a hypercubic lattice.
Thus, the study of random walks on the graph corresponding to a crystal may be useful in the
description of the diffusion.

It is well known that

K(x, t) = (2πt)−d/2 exp
( − x2/2t

)
(3)

where x2 = ∑d
j=1 x

2
j is a solution of the diffusion equation, andK(x, 0) = limt→0K(x, t) =

δ(x). Hence, for a particle starting at the origin at time t = 0, the probability of finding it at
some later time t within a region A ⊂ R

d is
∫
A

dx K(x, t).
A probabilistic model of Brownian motion is obtained [27] by using a probability space

(�,F,P ), where the underlying space � is the space of all the sample paths ω : I −→ R
d

defined on an interval I ⊂ R: for example I = [0,∞). The position of the particle at time
s > 0 is a random variable Xs : � −→ R

d , Xs(ω) = ω(s). For any Borel set A ⊂ R
d , the

event Xs ∈ A means that the Brownian particle has passed the ‘window’ A at time s. The
probability measure A 	→ P (Xs ∈ A) = ∫

A
dx K(x, s), where Xs ∈ A stands for the set

{ω| Xs(ω) ∈ A}, is called the distribution of Xs.
A stochastic process is a map s 	→ Xs defined over some interval, and in order to define

such a process it is necessary to indicate how to compute the probabilities of general events,
including a rule to determine the probabilities P (Xs1 ∈ A1, . . . , Xsn ∈ An) of compound
events [27]. In the case

P (Xs1 ∈ A1, . . . , Xsn ∈ An)
=

∫
An

dxn . . .
∫
A2

dx2

∫
A1

dx1K(xn − xn−1, sn − sn−1) . . .

×K(x2 − x1, s2 − s1)K(x1, s1) (4)

with K given by (3) and

P (X0 ∈ A0) =
{

1 if 0 ∈ A0

0 otherwise
(5)

the stochastic process Xs is the Wiener process.
If in the diffusion equation we replace the time variable t by an imaginary time variable it ,

then the obtained equation ∂
∂(it)P = 1

2�P , coincides with the Schrödinger equation of a free
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particle i ∂
∂t
ψ = − 1

2�ψ , written in a suitable system of physical units. In addition, it follows
that the wavefunction ψ satisfies the relation

ψ(x, t) =
∫

dx ′K(x − x ′, it)ψ(x ′, 0). (6)

The complex transition function

K(x, it) =
{
(2π it)−d/2 exp(−x2/2it) if t �= 0

δ(x) if t = 0
(7)

obtained from K(x, t) by the analytic continuation t 	→ it is no longer positive but complex
and of oscillatory character. The behaviour of the solutions of diffusion and Schrödinger
equation is qualitatively very different [25–27]. The Wiener measure is transformed into a
complex pseudo-measure.

The mathematical relation existing between the two equations is useful in calculations
concerning the Schrödinger equation, but not very useful in the interpretation of the equation
itself since the formal analytic continuation does not transfer the associated microscopic model.
The random walks of Brownian particles have a correspondence in the Feynman paths [8,27],
but the positive Boltzmann weights are replaced by complex numbers and an interpretation in
terms of the classical probability is not possible.

There exist several attempts [12, 14, 15, 25, 26] to find an underlying stochastic model
for the Schrödinger equation related to this equation as directly as the Brownian motion
model is to the diffusion equation. We have seen that Brownian motion is a limit of random
walks, and a random walk is associated with a discrete version of the diffusion equation.
Gudder [12,14,15] has shown that an analogous situation occurs for the Schrödinger equation:
there exists a quantum stochastic process whose associated evolution is given by the free
Schrödinger equation.

An outcome of a quantum mechanical measurement is the result of various interfering
alternatives each having an amplitude for occurring. The probability of this outcome is the
absolute value squared of the sum of these amplitudes [7, 8]. Using these two statements as a
basic axiom, Gudder has formulated [12, 14, 16] a theory of quantum probability in terms of
amplitude functions. Among the quantum stochastic processes defined within this framework
there is the so-called discrete quantum mechanics [12, 13, 16].

The starting point of discrete quantum mechanics [16] is a non-empty discrete set S
interpreted as a set of ‘states’ that a quantum particle can occupy. A functionK1 : S×S −→ C

is a stochastic one-step transition amplitude if for every s1, s2 ∈ S we have∑
s

K1(s1, s) = 1∑
s

K1(s1, s)K1(s2, s) =
∑
s

K1(s, s1)K1(s, s2) = δs1s2
(8)

where the summations converge absolutely. For j ∈ N, a j -path is a (j + 1)-tuple
ω = (s0, s1, . . . , sj ) ∈ Sj+1. Let Pj (S) denote the set of j -paths in S and form the sample
space � = PN(S). Starting from a unit vector f0 ∈ l2(S) representing the initial distribution
for a quantum particle we define the amplitude density [16]

f : � −→ C

f (s0, s1, . . . , sN) = f0(s0)K1(s0, s1) . . . K1(sN−1, sN).
(9)

For j = 0, 1, . . . , N define the map

Xj : � −→ S Xj(s0, s1, . . . , sN) = sj (10)



5472 N Cotfas

which becomes a measurement if we consider on S and X−1
j (s) the counting measures [16].

For j ∈ N with 1 � j � N , define Kj : S × S −→ C by

Kj(s0, s) =  {K1(s0, s1)K1(s1, s2) . . . K1(sj−1, s) | (s0, s1, . . . , sj−1, s) ∈ Pj (S)} (11)

and define K0(s0, s) = δs0s . The complex number Kj(s0, s) is interpreted as the conditional
amplitude that a particle is at s at time j given that it was at s0 at time 0, and it satisfies the
Chapman–Kolmogorov equation [12, 13, 16]

Kj(s0, s) =
∑
s ′
Km(s0, s

′)Kj−m(s ′, s) (12)

for all m � j .
The wavefunction for Xj becomes [12, 13, 16]

fj (s) =  {f (ω) | ω ∈ �, Xj(ω) = s} =
∑
s0

f0(s0)Kj (s0, s). (13)

Since the linear operator U : l2(S) −→ l2(S), (Ug)(s) = ∑
s0
K1(s0, s) g(s0) is unitary and

fj = Ujf0, from ||f0|| = 1 we get ||fj || = 1, for all j = 0, 1, . . . , N . The main purpose of
this paper is to present some mathematical results concerning random walks on diamond-type
crystals and carbon nanotubes. As an illustration of the usefulness of these results we analyse
some details concerning a possible application of the discrete quantum mechanics to crystal
physics. The usual difficulties encountered in a path integral approach are avoided since we
use finite spaces and counting measures.

2. Graphs defined by discrete metric spaces

Let n � 2 be a natural number and let

Vn = {
x = (x1, x2, . . . , xn) ∈ Z

n
∣∣ x1 + x2 + · · · + xn ∈ {0, 1}} = V ′

n ∪ V ′′
n (14)

where V ′
n = {x ∈ Z

n | x1 + x2 + · · · + xn = 0} and V ′′
n = (1, 0, . . . , 0) + V ′

n. The mapping
dn : Vn × Vn −→ N

dn(x, y) = |x1 − y1| + |x2 − y2| + · · · + |xn − yn| (15)

is a distance on Vn. Each point x ∈ Vn has n nearest neighbours, namely

xi = x + ε(x)ei i ∈ In (16)

where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), In = {1, 2, . . . , n}
and

ε(x) = (−1)x1+x2+···+xn =
{

1 if x1 + x2 + · · · + xn = 0

−1 if x1 + x2 + · · · + xn = 1.
(17)

The n(n− 1) points xij = (xi)j corresponding to i �= j are the next-nearest neighbours of x.
One can remark that xii = x, and xijk = xkji for all i, j, k ∈ In.

The graph Gn = (Vn, En), where

En = {{x, y} | x, y ∈ Vn, dn(x, y) = 1} = {{x, xi} | x ∈ Vn, i ∈ In}
can be associated to the metric space Mn = (Vn, dn) in a natural way. A k-step walk [19] on
Gn with the starting point x has the form

{x, xi1}{xi1 , xi1i2} . . . {xi1i2...ik−1 , xi1i2...ik−1ik } (18)

and will be denoted by (x, i1i2 . . . ik). The minimal length of a walk from x to y is dn(x, y).
Since xijkijk = x, the walk (x, ijkijk) is closed for any i, j, k ∈ In. The walks (x, ijkijk)
with i �= j �= k �= i are called hexagonal walks.



Random walks on diamond and nanotubes 5473

An isometry of the metric space Mn is a bijection g : Vn −→ Vn : x 	→ gx such that
dn(gx, gy) = dn(x, y), for all x, y ∈ Vn. Let I, i : Z

n −→ Z
n, Ix = x, ix = −x, and let Sn

be the group of all the permutations σ : In −→ In. The transformations gσ , ga : Vn −→ Vn
gσ (x1, x2, . . . , xn) = (xσ−1(1), xσ−1(2), . . . , xσ−1(n))

ga(x1, x2, . . . , xn) =
{
(x1 + a1, x2 + a2, . . . , xn + an) if a ∈ V ′

n

(−x1 + a1,−x2 + a2, . . . ,−xn + an) if a ∈ V ′′
n

(19)

are isometries of Mn for any σ ∈ Sn, a ∈ Vn. One can remark that

gσ (x
i) = (gσ x)

σ(i) ga(x
i) = (gax)

i (20)

for all σ ∈ Sn, a ∈ Vn, i ∈ In.
A graph-automorphism of Gn is a bijection g : Vn −→ Vn : x 	→ gx such that

{x, y} ∈ En ⇐⇒ {gx, gy} ∈ En. Any isometry of Mn is a graph-automorphism of Gn.
Lemma 1. Each graph-automorphism of Gn transforms a hexagonal walk into a hexagonal
walk.

Proof. If the graph-automorphism g : Vn −→ Vn transforms the hexagonal walk
(x, ijkijk) into (gx, i1i2i3i4i5i6) then we must have i1 �= i2 �= i3 �= i4 �= i5 �= i6 and
ei1 − ei2 + ei3 − ei4 + ei5 − ei6 = (0, 0, . . . , 0), whence i4 = i1, i5 = i2 and i6 = i3. �

Lemma 2. (a) The point o = (0, 0, . . . , 0) is invariant under gσ and

gσ (o
i1i2...ik ) = oσ(i1)σ (i2)...σ (ik) (21)

for all σ ∈ Sn, k ∈ N and i1, i2, . . . , ik ∈ In.
(b) If g is a graph-automorphism of Gn such that go = o then g ∈ {gσ | σ ∈ Sn}.

Proof. (a) The relation (21) is a consequence of the relations gσo = o and gσ (xi) = (gσ x)
σ(i).

(b) If g is a graph-automorphism such that go = o then g{o1, o2, . . . , on} = {o1, o2, . . . , on},
and hence there is σ ∈ Sn such that g(oi) = oσ(i), for all i ∈ In. The transformation
h = g−1 ◦ gσ is a graph-automorphism of Gn, ho = o, and h(oi) = oi for all i ∈ In. In order
to prove that h = I it is sufficient to prove the implication

hx = x

h(xi) = xi for all i ∈ In

}
�⇒ h(xij ) = xij for all i, j ∈ In (22)

for any x ∈ Vn. Let x be a fixed point of Vn such that hx = x, h(xi) = xi for all i ∈ In,
and let i, j ∈ In, i �= j . If we assume that h(xij ) = xik with k �= j then h transforms the
walk (xk, kij) = {xk, x}{x, xi}{xi, xij } into the walk {xk, x}{x, xi}{xi, xik} = (xk, kik), and
hence h cannot transform the hexagonal walk (xk, kijkij) into a hexagonal walk. In view of
lemma 1 we must have h(xij ) = xij . �

Let us denote by Tn the group of all the ‘translations’ {Vn −→ Vn : x 	→ x + a | a ∈ V ′
n}

and by {i|e1} the isometry Vn −→ Vn : x 	→ ix + e1 = −x + e1. One can remark that
{i|e1}V ′

n = V ′′
n, {i|e1}V ′′

n = V ′
n, and {i|e1} ◦ {i|e1} = I .

Theorem 1. The groupGn of all the graph-automorphisms of Gn coincides to the group of all
the isometries of the metric space Mn and

Gn =
⋃
σ∈Sn

Tn ◦ gσ ∪
⋃
σ∈Sn

Tn ◦ {i|e1} ◦ gσ . (23)
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Proof. Let g be a graph-automorphism of Gn. If a = go ∈ V ′
n thenh : Vn −→ Vn, hx = gx−a

is a graph-automorphism and ho = o. In view of lemma 2 there is σ ∈ Sn such that h = gσ ,
and hence the transformation gx = gσx+a belongs to Tn◦gσ . If go ∈ V ′′

n then there is a ∈ V ′
n

such that go = e1 + a, and h : Vn −→ Vn, hx = e1 + a − gx is a graph-automorphism with
ho = o. In view of lemma 2 there is σ ∈ Sn such that h = gσ , whence gx = −gσx + e1 + a,
that is g ∈ Tn ◦ {i|e1} ◦ gσ . Since Tn ⊂ Gn, {gσ | σ ∈ Sn} ⊂ Gn and {i|e1} ∈ Gn the group of
all the graph-automorphisms of Gn is given by (23). In addition, any graph-automorphism of
Gn is an isometry of Mn. �

The group-automorphismsG4 is isomorphic [2] to the space groupO7
h = Fd3m, and the

graph G4 can be used as a mathematical model for a diamond-type crystal [1, 10, 24, 30]. It
corresponds to a four-axes description [2,3] very similar to a well known description existing
in the case of hexagonal crystals [29]. This description offers some facilities since the use of
an additional axis leads to simpler expressions for theO7

h-invariant mathematical objects, and
allow us to index in a natural way the atoms of the crystal [2, 3].

The graph G3 can be used as a mathematical model for the honeycomb lattice, and as a
starting point in the description of carbon nanotubes. We present the method which leads from
G3 to a model for a nanotube [6,18,32], but in a more general version. Let c = (c1, c2, . . . , cn)

be a fixed element of V ′
n. The relation

x ∼ y ⇐⇒ x − y ∈ Zc (24)

is an equivalence relation on Vn. The equivalence class corresponding to x ∈ Vn is [x] = x+Zc.
Since x ∼ y �⇒ xi ∼ yi , we can define [x]i = [xi], and consider the graph Gn,c = (Vn,c, En,c),
where

Vn,c = {[x] | x ∈ Vn} En,c = {([x], [x]i ) | [x] ∈ Vn,c, i ∈ In}. (25)

The set Vn,c can be regarded as a subset of the factor Z-module Z
n/(Zc), namely

Vn,c = {[x1, x2, . . . , xn] ∈ Z
n/(Zc) | x1 + x2 + · · · + xn ∈ {0, 1}} (26)

since x1 + x2 + · · · + xn = (x1 + kc1) + (x2 + kc2) + · · · + (xn + kcn), for any k ∈ Z. The graph
G3,c can be used [4] as a mathematical model for a carbon nanotube with chirality c.

Theorem 2. For each a ∈ Vn, the transformation

ga : Vn,c −→ Vn,c ga[x] =
{

[x + a] if a ∈ V ′
n

[−x + a] if a ∈ V ′′
n

(27)

is a graph-automorphism of Gn,c.

Proof. Since x−y ∈ Zc ⇐⇒ (±x+a)−(±y+a) ∈ Zc the transformation ga is well defined,
and ga([x]i ) = (ga[x])i . Indeed,

ga[x
i] =

{
[xi + a] = [(x + a)i] = [x + a]i if a ∈ V ′

n

[−xi + a] = [(−x + a)i] = [−x + a]i if a ∈ V ′′
n.

�

In order to simplify the mathematical computations, a crystal is usually finitized by using
the Born–Karman periodic boundary conditions [1]. In the case of our models this reduction
can be achieved by using a factor ring Zm instead Z in the definition of Gn. Let m �= 0 be a
fixed natural number, and let

Vn,m = {x̂ = (x̂1, x̂2, . . . , x̂n) ∈ (Zm)n | x̂1 + x̂2 + · · · + x̂n ∈ {0̂, 1̂}} (28)
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where Zm is the factor ring Z/(mZ) and 0̂ = mZ, 1̂ = 1 + mZ. The canonical projection
Z −→ Zm : k 	→ k̂ = k +mZ allows us to consider the projector

π : Vn −→ Vn,m π(x1, x2, . . . , xn) = (x̂1, x̂2, . . . , x̂n) (29)

and to associate x̂1 = π(x1), . . . , x̂n = π(xn) to each x̂ = π(x) ∈ Vn,m. The graph
Gn,m = (Vn,m, En,m), where En,m = {{x̂, x̂i} | x̂ ∈ Vn,m, i ∈ In} has 2mn−1 vertices, and each
of them has n nearest neighbours. Particularly, the graphs G4,m are useful in the description of
diamond-type crystals [3].

Theorem 3. The transformations gσ , gâ : Vn,m −→ Vn,m
gσ (x̂1, x̂2, . . . , x̂n) = (x̂σ−1(1), x̂σ−1(2), . . . , x̂σ−1(n)) (30)

gâx̂ =
{
x̂ + â if â1 + â2 + · · · + ân = 0̂

−x̂ + â if â1 + â2 + · · · + ân = 1̂
(31)

are graph-automorphism of Gn,m for any σ ∈ Sn, â ∈ Vn,m.

Proof. We have gσ (x̂i) = (gσ x̂)
σ(i) and gâ(x̂i) = (gâx̂)

i , for all i ∈ In and x̂ ∈ Vn,m. �
Let F(Vn) be the vector space of all the functions ψ : Vn −→ C, and let us consider the

linear operator of Schrödinger type [5, 31]

H : F(Vn) −→ F(Vn) (Hψ)(x) = αψ(x) +
n∑
j=1

βjψ(x
j ) (32)

where α, β1, β2, . . . , βn are fixed real numbers.

Theorem 4. The numbers

E1,2(k) = α ±
( n∑
j=1

β2
j +

∑
j �=l
βjβl cos(kj − kl)

)1/2

(33)

belong to the spectrum of H for all k = (k1, k2, . . . , kn) ∈ R
n.

Proof. The bounded function ψk : Vn −→ C

ψk(x) =
{
aei(k1x1+k2x2+···+knxn) if ε(x) = 1
bei(k1x1+k2x2+···+knxn) if ε(x) = −1

(34)

where a, b are two constants, verifies the relationHψk = Eψk if and only if (a, b) is a solution
of the system of equations

αa + (β1eik1 + β2eik2 + · · · + βne
ikn)b = Ea

αb + (β1e−ik1 + β2e−ik2 + · · · + βne
−ikn)a = Eb.

This system has non-trivial solutions if and only if∣∣∣∣ α − E β1eik1 + β2eik2 + · · · + βneikn

β1e−ik1 + β2e−ik2 + · · · + βne−ikn α − E
∣∣∣∣ = 0

that is, if and only if E is one of the numbers

E1,2(k) = α ± |β1eik1 + β2eik2 + · · · + βne
ikn |.

Using the relation eikj = cos kj + i sin kj we get (33). �

If β1 = β2 = · · · = βn = β then we get E1,2(k) = α ± β
(
n +

∑
j �=l cos(kj − kl)

)1/2
.

The relation (gψ)(x) = ψ(g−1x) defines a unitary representation of Gn in the Hilbert space
l2(Vn). The restriction of H to l2(Vn) is a Gn-invariant self-adjoint operator [2].

Let F(Vn,c) (resp. F(Vn,m)) be the vector space of all the functions ψ : Vn,c −→ C (resp.
ψ : Vn,m −→ C).
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Theorem 5. (a) If k ∈ R
n and k1c1 +k2c2 + · · ·+kncn ∈ 2πZ then the numbersE1,2(k) defined

by (33) belong to the spectrum of the linear operator

H : F(Vn,c) −→ F(Vn,c) (Hψ)[x] = αψ[x] +
n∑
j=1

βjψ[xj ]. (35)

(b) If k1, k2, . . . , kn ∈ {
2π l

m

∣∣ l ∈ {0, 1, . . . , m− 1}} then the numbersE1,2(k) defined by (33)
belong to the spectrum of the linear operator

H : F(Vn,m) −→ F(Vn,m) (Hψ)(x̂) = αψ(x̂) +
n∑
j=1

βjψ(x̂
j ). (36)

Proof. If k satisfies the indicated conditions then the relation (34) defines a function
ψk : Vn,c −→ C (resp. ψk : Vn,m −→ C) such that Hψk = E1,2(k) ψk . �

Our results are in good agreement with those presented in [17, 18, 28, 32].

3. Random walks

The number Nk of all the k-step walks connecting the points (0, 0) and (n1, n2) on the Cartesian
lattice graph Z

2 coincides to the coefficient ofZn1
1 Z

n2
2 in the expression (Z1 +Z−1

1 +Z2 +Z−1
2 )

k .
Since ∫ π

−π
eimϕ dϕ =

{
0 for m �= 0

2π for m = 0
(37)

the number Nk is given by the formula [19]

Nk = 1

(2π)2

∫ π

−π

∫ π

−π

(
eiϕ1 + e−iϕ1 + eiϕ2 + e−iϕ2

)k
e−i(n1ϕ1+n2ϕ2) dϕ1 dϕ2. (38)

Let 61, 62, . . . , 6n be n complex numbers. We associate the weight 6j to the edge
{x, xj } ∈ En and the weight 6i16i2 . . . 6ik to a walk (x, i1i2 . . . ik). The formula for the sum
wk(a, x) of the weights of all the k-step walks from a to x we obtain in this section is useful,
for example, in a microscopic approach of the diffusion. If we use a discrete time and assume
that in one timestep a particle can only pass from a point y to one of its nearest neighbours
y1, y2, . . . , yn with the probabilities 61, 62, . . . , 6n ∈ [0, 1], thenwk(a, x) is the probability
to find a particle at point x after k timesteps given that it was initially at point a.

Theorem 6. We have

wk(o, x) =




〈( n∑
j=1

6je
iϕj

)k/2( n∑
j=1

6je
−iϕj

)k/2
e−ixϕ

〉
if k is even

〈( n∑
j=1

6je
iϕj

)(k+1)/2( n∑
j=1

6je
−iϕj

)(k−1)/2

e−ixϕ

〉
if k is odd

(39)

where xϕ = x1ϕ1 + x2ϕ2 + · · · + xnϕn, and

〈f (ϕ)〉 = 1

(2π)n

∫ π

−π

∫ π

−π
. . .

∫ π

−π
f (ϕ) dϕ1 dϕ2 . . . dϕn. (40)

Proof. The number Nk(o, x) of k-step walks from o to x = (x1, x2, . . . , xn) corresponds to
the number of possibilities to express x in the form

ei1 − ei2 + ei3 − ei4 + · · · + (−1)k+1eik = (x1, x2, . . . , xn).
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If k is even, k = 2m, then wk(o, x) is the coefficient of Zx1
1 Z

x2
2 . . . Z

xn
n in

((61Z1 + 62Z2 + · · · + 6nZn) (61Z
−1
1 + 62Z

−1
2 + · · · + 6nZ

−1
n ))

m

and if k is odd, k = 2m + 1, then wk(o, x) is the coefficient of Zx1
1 Z

x2
2 . . . Z

xn
n in

(61Z1 + 62Z2 + · · · + 6nZn)
m+1 (61Z

−1
1 + 62Z

−1
2 + · · · + 6nZ

−1
n )

m.

If 61 = 62 = · · · = 6n = 1 then wk(o, x) = Nk(o, x). �

Since, for each a ∈ Vn, the transformation

g : Vn −→ Vn gx =
{
x − a if a ∈ V ′

n

−x + a if a ∈ V ′′
n

(41)

belongs to Gn and ga = o, we have wk(a, x) = wk(o, gx).
Taking into account the definitions of the graphs Vn,c and Vn,m one can remark [4] that

the walks on Vn,c and Vn,m are related to some classes of walks on Vn, and (a finite number of
terms are non-zero)

wk([o], [x]) =
∑
j∈Z

wk(o, x + jc) (42)

wk(ô, x̂) =
∑

j1,j2,...,jn∈Z

wk(o, (x1 + j1m, x2 + j2m, . . . , xn + jnm)). (43)

Starting from the graph Gn = (Vn, En) we can obtain the graph G ′
n = (Vn, E ′

n), where
E ′
n = En ∪ {{x}|x ∈ Vn}, by adding a loop {x} for each x ∈ Vn. The walks on G ′

n allow us
to describe the discrete trajectories of a particle which in one step time can either keep its
position or move to a nearest-neighbour position, and they are related to the walks on Gn. For
k > j , starting from any j -step walk on Gn we can generate some k-step walks on G ′

n by
inserting k − j timesteps in which the particle does not change its position. Any walk on G ′

n

can be obtained in this way, and the number of the k-step walks on G ′
n obtained by starting

from a fixed j -step walk on Gn coincides with the number of strictly increasing functions
f : {1, 2, . . . , j} −→ {1, 2, . . . , k}, and it is k!/(j !(k − j)!). If we associate the weight 60 to
a loop {x} ∈ En, then one can remark that the sum w′

k(o, x) of the weights of the k-step walks
from o to x on G ′

n is

w′
k(o, x) =

k∑
j=0

k!

j !(k − j)!6
k−j
0 wj(o, x). (44)

4. Quantum random walks

In this section we present a possible application of the discrete quantum mechanics to diamond-
type crystals and carbon nanotubes based on our graphs. Let us consider the set

Sn = Vn × In = {(x, k) | x ∈ Vn, k ∈ In} (45)

interpreted as a set of ‘states’ that a quantum particle can occupy. Following Gudder [12,13,16],
we can consider that a particle in state (x, k) is a particle lying in the vicinity of the point x
and moving in the direction of xk (that is, a particle with ‘position’ x and ‘momentum’ k).

Theorem 7. If α, β ∈ C satisfy the conditions

α + (n− 1)β = 1 |α|2 + (n− 1)|β|2 = 1 |α − β| = 1 (46)
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then the function K1 : Sn × Sn −→ C

K1((x, k), (y, l)) =



α if y = xk and l = k

β if y = xk and l �= k

0 otherwise

(47)

is a stochastic one-step transition amplitude.

Proof. The set of pairs (α, β) ∈ C
2 satisfying the relations (46) is not empty. Indeed, the

complex numbers

α = 1

n
± 1 − n

n

√
1 − n2κ2 + (1 − n)κi

β = 1

n
± 1

n

√
1 − n2κ2 + κi

(48)

satisfy (46) for any κ ∈ [−1/n, 1/n]. Since x = xkk = xll , for s1 = s2 = (x, k) we get∑
s

K1(s1, s)K1(s2, s) =
n∑
l=1

|K1((x, k), (x
k, l))|2 = |α|2 + (n− 1)|β|2 = 1

∑
s

K1(s, s1)K1(s, s2) =
n∑
l=1

|K1((x
l, l), (x, xk))|2 = |α|2 + (n− 1)|β|2 = 1.

Since xk = xkll , for s1 = (x, k), s2 = (xkl, l), k �= l, we obtain∑
s

K1(s1, s)K1(s2, s) =
n∑
j=1

K1((x, k), (x
k, j))K1((x

kl, l), (xk, j))

= αβ + βα + (n− 2)|β|2
= |α|2 + (n− 1)|β|2 − |α − β|2 = 0

and for s1 = (x, k), s2 = (x, l), k �= l, we get∑
s

K1(s, s1)K1(s, s2) =
n∑
j=1

K1((x
j , j), (x, k))K1((x

j , j), (x, xl))

= αβ + βα + (n− 2)|β|2 = 0.

�
Let K1 be a fixed stochastic one-step transition amplitude of the form (47), and let N

be a fixed natural number. For j ∈ N, a j -path is a j + 1-tuple (s0, s1, . . . , sj ) ∈ Sj+1
n . Let

Pj (Sn) denote the set of j -paths in Sn and let us consider the sample space�n = PN(Sn). For
j = 0, 1, . . . , N the map

Xj : �n −→ Sn Xj (s0, s1, . . . , sN) = sj (49)

becomes a measurement if we consider on Sn and X−1
j (s) the counting measures [16].

Following the general formalism of discrete quantum mechanics, consider the maps
Kj : Sn × Sn −→ C defined by K0(s0, s) = δs0s , and

Kj(s0, s) =  {K1(s0, s1)K1(s1, s2) . . . K1(sj−1, s) | (s0, s1, . . . , sj−1, s) ∈ Pj (Sn)} (50)

for j ∈ {1, 2, . . . , N}. The complex number Kj(s0, s) is interpreted as the conditional
amplitude that a particle is at s at time j given that it was at s0 at time 0. In the case of
a stochastic one-step transition amplitude of the form (47), for s0 = (x, k) and s = (y, l) we
can have K1(s0, s1)K1(s1, s2) . . . K1(sj−1, s) �= 0 only if there exist i0 = k, i1, . . . , ij−1 ∈
{1, 2, . . . , n} such that y = xi0i1...ij−1 and sm = (xi0i1...im−1 , im), for all m ∈ {1, 2, . . . , j − 1}.
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Our main objective is to determine the mapsKj which allow us to obtain the wavefunction
for Xj

fj : Sn −→ C fj (s) =
∑
s0

f0(s0)Kj (s0, s) (51)

for any initial distribution f0 ∈ l2(Sn). Since the computation of Kj((x, k), (y, l)) in general
appears to be quite difficult, we consider firstly a similar but more tractable problem [23]. The
mapsQj : �n −→ Vn, Pj : �n −→ In, where

Qj(s0, s1, . . . , sN) = π1(sj ) Pj (s0, s1, . . . , sN) = π2(sj ) (52)

defined by using the projectors π1(x, k) = x, π2(x, k) = k correspond to a position
measurement and respectively a momentum measurement at the discrete time j ∈
{0, 1, . . . , N}. The number

K̃j (k, l) =
∑
x

Kj ((o, k), (x, l)) (53)

can be interpreted [23] as the amplitude that a particle moves in direction l after j timesteps
given that it was initially moving in the direction k. The corresponding probability is
|K̃j (k, l)|2.

Theorem 8. Denoting α − β = eiθ , for any j ∈ {1, 2, . . . , N} we get

K̃j (k, l) =




1

n
+
n− 1

n
cos jθ + i

n− 1

n
sin jθ if k = l

1

n
− 1

n
cos jθ − i

1

n
sin jθ if k �= l.

(54)

Proof. Let us consider the n × n matrices In = (δkl), M = (Mkl), L = (Lkl), where
Mkl = (α − β)δkl + β, Lkl = 1 for all k, l ∈ {1, 2, . . . , n}. We have

K1(k, l) = K1((o, o
k), (ok, okl)) = Mkl

K2(k, l) =
n∑
i=1

K1((o, o
k), (ok, oki)) K1((o

k, oki), (oki, okil))

=
n∑
i=1

MkiMil = (M2)kl

and generally

Kj(k, l) =
n∑

i1,i2,...,ij−1=1

Mki1Mi1i2 . . .Mij−1l = (Mj )kl . (55)

SinceM = (α − β)In + βL, InL = LIn and Lj = nj−1L, we get

Mj = [(α − β)In + βL]j = (α − β)j In +
1

n

j∑
i=1

j !

i! (j − i)! (α − β)j−i (nβ)iL

whence relation (54). �
The sum (55) contains terms corresponding to all the j -paths with initial element (o, k).

If instead of the matrixM we use the matrix M(ϕ) with entries Mkl(ϕ) = Mkleiϕk , and if we
replace the sum (55) by

n∑
i1,i2,...,ij−1=1

Mki1(ϕ)Mi1i2(−ϕ)Mi2i3(ϕ)Mi3i4(−ϕ) . . .Mij−1l((−1)j−1ϕ) (56)

then we can select the terms corresponding to the j -paths with final element (x, l) by using
the method from section 3. We get the following result.
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Table 1. Time dependence of Kj in the case n = 3, κ = 1
3 (o = (0, 0, 0), o1 = (1, 0, 0)).

j Kj ((o, 1), (o, 1)) Kj ((o, 1), (o, 2)) Kj ((o, 1), (o1, 1)) Kj ((o, 1), (o1, 2))

1 0 0 1
3 − 2

3 i 1
3 + 1

3 i

2 − 1
3 − 4

9 i 1
3 − 1

9 i 0 0

3 0 0 − 1
9 + 2

9 i 2
9 − 4

9 i

4 25
81 − 14

81 − 4
27 i 0 0

5 0 0 7
81 − 34

81 i − 5
81 + 5

81 i

6 − 1
3 − 140

729 i 37
243 − 35

729 i 0 0

7 0 0 − 77
729 + 166

729 i 28
729 − 188

729 i

8 395
2187 − 448

2187 − 32
729 i 0 0

9 0 0 − 103
2187 − 626

2187 i − 199
2187 + 217

2187 i

10 − 1
3 + 1892

19 683 i 1103
6561 + 473

19 683 i 0 0

11 0 0 965
19 683 + 7526

19 683 i − 454
19 683 − 2344

19 683 i

12 248 377
531 441 − 70 766

531 441 − 4780
177 145 i 0 0

13 0 0 45 175
531 441 − 222 322

531 441 i 30 835
531 441 + 96 821

531 441 i

14 − 1
3 − 80 764

531 441 i 31 921
177 147 − 20 191

531 441 i 0 0

Theorem 9. We have

Kj((o, k), (x, l)) =
{ 〈((M(ϕ)M(−ϕ))j/2)kle−ixϕ〉 if j is even

〈((M(ϕ)M(−ϕ))(j−1)/2M(ϕ))kle
−ixϕ〉 if j is odd

(57)

where 〈f (ϕ)〉 is defined by (40).

For any a ∈ Vn, using the symmetry transformation (41) we get Kj((a, k), (x, l)) =
Kj((o, k), (gx, l)). We can interpret Pj ((a, k), (x, l)) = |Kj((a, k), (x, l))|2 as the
probability that a particle arrives at x and moves in the direction l after j timesteps given
that it was initially at a moving in direction k.

For example, in the case n = 3 and κ = 1
3 we get α = 1

3 − 2
3 i, β = 1

3 + 1
3 i, and

M(ϕ1, ϕ2, ϕ3) =



(
1
3 − 2

3 i
)

eiϕ1
(

1
3 + 1

3 i
)

eiϕ1
(

1
3 + 1

3 i
)

eiϕ1(
1
3 + 1

3 i
)

eiϕ2
(

1
3 − 2

3 i
)

eiϕ2
(

1
3 + 1

3 i
)

eiϕ2(
1
3 + 1

3 i
)

eiϕ3
(

1
3 + 1

3 i
)

eiϕ3
(

1
3 − 2

3 i
)

eiϕ3


 . (58)

The results presented in table 1, obtained by using (57), suggest that Kj((o, k), (x, l)) is an
‘oscillating’ function of discrete time parameter j .

Starting from Sn,c = Vn,c × In instead of Sn, we obtain a version of our model
corresponding to the graph Gn,c. To each transition amplitude on Sn of form (47) we
associate the stochastic one-step transition amplitude on Sn,c defined byK1(([x], k), ([y], l)) =
K1((x, k), (y, l)), and we get the formula

Kj(([o], k), ([x], l)) =
∑
i∈Z

Kj((o, k), (x + ic, l)). (59)

For n = 3 this model may be useful in the description of the physical phenomena occurring in
carbon nanotubes of chirality c.

A finite version [3] of our model useful in some applications concerning diamond-type
crystals can be obtained by starting fromSn,m = Vn,m×In instead ofSn. In this case, the relation
K1((x̂, k), (ŷ, l)) = K1((x, k), (y, l)) defines a stochastic one-step transition amplitude on
Sn,m, and

Kj((ô, k), (x̂, l)) =
∑

i1,...,in∈Z

Kj((o, k), ((x1 + i1m, . . . , xn + inm), l)). (60)
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A normalization to unity is necessary in the case of (59) and (60) in order to keep our
probabilistic interpretation.

5. Concluding remarks

It is well known that some models existing in crystal physics are based on the path
integral [8, 9, 21]. Even if we do not take into consideration the temperature of the crystal
or the presence of an external field the description of the evolution of a particle inside a crystal
is a very difficult problem. The particle interacts with the surrounding crystal and determines
a local distortion, usually described as a cloud of phonons, which moves with the particle.
Some quite drastic simplifications are needed in order to study such a physical system. Since
the reduction to a simpler idealized problem is not unique, some very different path integral
approaches may exist. In this paper we analyse some details concerning the possibility to use
a discrete version of the path integral method.

Discrete versions of the path integral are usually obtained by time-slicing the path integral,
replacing the differentials by some finite differences, using a lattice approximation to the
Lagrangian, or some perturbative expansions [21]. But, there also exists the possibility to
directly construct a discrete version by starting from the fundamental principles [7, 8], as in
the case of the field theory on a lattice [27]. This is the method we use in this paper.

We start from a tight-binding approximation of the crystal [11, 20]. In this approach the
particle may, with some probability, be located near any atom. Particle exchange between any
two atoms of the crystal takes place by way of a chain of nearest-neighbour exchanges. It moves
‘freely’ through the crystal jumping from one atom to another by the exchange process [20].
We regard these sequences of jumps between neighbouring atoms as the ‘classical’ trajectories
of the particle. More than that, in the discrete version of path integral we use in this paper,
we restrict the class of all the paths to the class of these classical paths. The main question is
whether after this drastic reduction the usual physical interpretation can be kept. We think that
the answer may be in the affirmative, and a model obtained in this way may attain the accuracy
of a model based on the tight-binding approximation.

It is well known that only the paths in the vicinity of classical trajectories bring significant
contribution to the path integral, and no path really needs to be considered if the neighbouring
path has a different action [8, p 29]. It is known that the amplitude for an event is the sum
of the amplitudes for the various alternative ways that the event can occur. ‘This permits the
amplitude to be analysed in many different ways depending on the different classes into which
the alternatives can be divided’ [8, p 20]. We consider only the paths in the vicinity of the
classical trajectories, and then we divide them into classes by putting into the same class the
paths corresponding to the same classical trajectory. In order to make this partition intuitive,
following the method of conceptual experiments presented in the book of Feynman and Hibbs,
one can imagine a crystal as a very complicated network of screens which allow a particle only
to jump between neighbouring atoms, and lead to only a discrete set of alternatives. On the
other hand, in many cases a path integral may be reduced by using a quantum action instead
of the classical action to a sum over classical paths only [22].

The discrete version of path integral we consider is a particular case for the discrete
quantum mechanics [16]. It is known that this general formalism based on the fundamental
principles of quantum mechanics leads in certain cases to results in good agreement with
classical path integral and quantum mechanics [12, 14, 15]. We think that the same situation
may occur in the case of our model for an adequate choice of the stochastic one-step transition
amplitude. Formula (54) and the numerical data presented for Kj((o, k), (x, l)) show that
these maps have the expected behaviour. In our description each ‘state’ (x, k) of the particle
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is described by a position parameter x and an additional parameter k ∈ {1, 2, . . . , n}. This
description is in agreement with the description used by Ord and Deakin [25, 26] in their
attempt to find a microscopic model for the Schrödinger equation.

The existing direct comparison of the discrete quantum mechanics with Schrödinger
equation concern some simple quantum systems. It seems to be very difficult to obtain
such a result in the case of a diamond-type crystal or a carbon nanotube described using
an additional axis. The use of a nonholonomic mapping and the general theory of path integral
in spaces with curvature and torsion [21] may be useful in such an attempt. We think that
the application of discrete quantum mechanics to crystal physics considered in this paper is at
least a useful toy model. Improved variants of this model can be obtained by using the results
from [12–16].
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